Course Title: Statistics in Bioinformatics

Course Code CSE- 877

Course Objectives: This is a 3 credit hours course designed for students with a background in biological sciences who have covered the pre-requisite courses of Computational Drug Design and Advanced Computational Biology. The course aims to provide students with the background knowledge of probability distributions and statistical knowledge applicable in analysis of molecular biology data. Furthermore, it will use the R statistical package for the implementation of these concepts. R is a widely used for data analysis and visualization in the scientific community and this will provide students with a useful set of skills to apply in their own research work.

Course Outcomes:	
After successfully completing this course, students will gain	
	A breadth and depth of multivariate visualization and computing skills necessary to apply
	high level analytical thinking to complex real-world problems of applied nature
	An exposure to the essentials of computing tools/languages and statistical software use and,
	hence, the ability to adopt technology know-how demanded in the modern job market
	Hands on practice of dealing classification problems, grouping variables, features
	engineering, machine learning strategies in both qualitative and quantitative scenarios
	concerning data driven decision support systems in bioinformatics and associated fields
Detailed Contents:	
	Distributions: putting particular focus on Binomial, Negative Binomial, Multinomial,
	Poisson, and Gaussian distributions and their applications in moleuclar biology.
	Data display and descriptive statistics
	Univariate and multivariate statistics
	Hypothesis testing
	Correlation and Regression analysis
	Particularly looking at Regression, Anova, PCA and HCA.
	Linear models.
	Micro Array Analysis
	Analyzing sequences
	Markov models
Recommended / Reference Books:	
	Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids by:
	Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison (13 May 1998) Key:
	citeulike:163532
	R programming for bioinformatics, by Robert Gentleman, Boca Raton, Chapman &
	Hall/CRC, 2009, ISBN 1-42006-367-7
	Applied Statistics for Bioinformatics using R, by Wim P. Krijnen
	Computer Simulation and Data Analysis in Molecular Biology and Biophysics: An
	Introduction Using R, by Victor A. Bloomfield, 2009 (Springer)